《写给程序员的数据挖掘实践指南》((美)扎哈尔斯基|译者:王斌)-图书推荐

编辑推荐语

扎哈尔斯基编著的《写给程序员的数据挖掘实践指南》的宗旨是为程序员提供快速的数据挖掘入门指南。整本书通过真实数据和实例来阐述数据挖掘中的基本技术。书中实例的Python代码和相应数据都可以从网站免费下载获得,读者可以利用这些代码和数据进行实际操作,从而快速掌握数据挖掘的基本概念和技术。本书适合对数据挖掘、数据分析和 系统感兴趣的程序员及相关领域的从业者阅读参考。

内容提要

数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。大多数数据挖掘的教材都专注于介绍理论基础,因而往往难以理解和学习。扎哈尔斯基编著的《写给程序员的数据挖掘实践指南》是写给程序员的一本数据挖掘指南,可以帮助读者动手实践数据挖掘、应用集体智慧并构建 系统。全书共8章,介绍了数据挖掘的基本知识和理论、协同过滤、内容过滤及分类、算法评估、朴素贝叶斯、非结构化文本分类以及聚类等内容。本书采用“在实践中学习”的方式,用生动的图示、大量的表格、简明的公式、实用的Python代码示例,阐释数据挖掘的知识和技能。每章还给出了习题和练习,帮助读者巩固所学的知识。本书适合对数据挖掘、数据分析和 系统感兴趣的程序员及相关领域的从业者阅读参考;同时,本书也可以作为一本轻松有趣的数据挖掘课程教学参考书。

目录

第1章 数据挖掘简介及本书使用方法
欢迎来到21世纪
并不只是对象
TB级挖掘是现实不是科幻
本书体例
第2章 协同过滤——爱你所爱
如何寻找相似用户
曼哈顿距离
欧氏距离
N维下的思考
一般化
Pymon中数据表示方法及代码
计算曼哈顿距离的代码
用户的评级差异
皮尔逊相关系数
在继续之前稍微休息一下
一个公式——余弦相似度
相似度的选择
一些怪异的事情
k近邻
Python的一个 类
一个新数据集
第3章 协同过滤——隐式评级及基于物品的过滤
隐式评级
调整后的余弦相似度
Slope One算法
Slope One算法的粗略描述图
基于Python的实现
加权Slope One: 模块
MovieLens数据集
第4章 内容过滤及分类——基于物品属性的过滤
一个简单的例子
用Python实现
给出 的原因
一个取值范围的问题
归一化
改进的标准分数
归一化vs.不归一化
回到Pandora
体育项目的识别
Python编程
就是它了
汽车MPG数据
杂谈
第5章 分类的进一步探讨——算法评估及kNN
训练集和测试集
10折交叉验证的例子
混淆矩阵
一个编程的例子
Kappa统计量
近邻算法的改进
一个新数据集及挑战
多数据、 好的算法以及一辆破公共汽车
第6章 概率及朴素贝叶斯一朴素贝叶斯
微软购物车
贝叶斯定理
为什么需要贝叶斯定理
i1OO i500
用Python编程实现
共和党vs.民主党
数字
Python实现
这种做法会比近邻算法好吗
第7章 朴素贝叶斯及文本——非结构化文本分类
一个文本正负倾向性的自动判定系统
训练阶段
第8章 聚类——群组发现
k—means聚类
SSE或散度
小结
安然公司

卖贝商城 推荐:《写给程序员的数据挖掘实践指南》((美)扎哈尔斯基|译者:王斌)